A dual gradient-projection method for large-scale strictly convex quadratic problems
نویسندگان
چکیده
The details of a solver for minimizing a strictly convex quadratic objective function subject to general linear constraints is presented. The method uses a gradient projection algorithm enhanced with subspace acceleration to solve the bound-constrained dual optimization problem. Such gradient projection methods are well-known, but are typically employed to solve the primal problem when only simple bound-constraints are present. The main contributions of this work are three-fold. First, we address the challenges associated with solving the dual problem, which is usually a convex problem even when the primal problem is strictly convex. In particular, for the dual problem, one must efficiently compute directions of infinite descent when they exist, which is precisely when the primal formulation is infeasible. Second, we show how the linear algebra may be arranged to take computational advantage of sparsity that is often present in the second-derivative matrix, mostly by showing how sparse updates may be performed for algorithmic quantities. We consider the case that the second-derivative matrix is explicitly available and sparse, and the case when it is available implicitly via a limited memory BFGS representation. Third, we present the details of our Fortran 2003 software package DQP, which is part of the GALAHAD suite of optimization routines. Numerical tests are performed on quadratic programming problems from the combined CUTEst and Maros and Meszaros test sets.
منابع مشابه
Spectral projected gradient and variable metric methods for optimization with linear inequalities
A family of variable metric methods for convex constrained optimization was introduced recently by Birgin, Mart́ınez and Raydan. One of the members of this family is the Inexact Spectral Projected Gradient (ISPG) method for minimization with convex constraints. At each iteration of these methods a strictly convex quadratic function with convex constraints must be (inexactly) minimized. In the ca...
متن کاملA Recurrent Neural Network for Solving Strictly Convex Quadratic Programming Problems
In this paper we present an improved neural network to solve strictly convex quadratic programming(QP) problem. The proposed model is derived based on a piecewise equation correspond to optimality condition of convex (QP) problem and has a lower structure complexity respect to the other existing neural network model for solving such problems. In theoretical aspect, stability and global converge...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملA New Method for Large - Scale Boxconstrained Convex Quadratic Minimizationproblems
In this paper, we present a new method for minimizing a convex quadratic function of many variables with box constraints. The new algorithm is a modiication of a method introduced recently by Friedlander and Mart nez (SIAM J. on Optimization, febru-ary 1994). Following the lines of Mor e and Toraldo (SIAM J. on Optimization 1, pp. 93-113), it combines an eecient unconstrained method with gradie...
متن کاملA Two-phase Gradient Method for Quadratic Programming Problems with a Single Linear Constraint and Bounds on the Variables∗
We propose a gradient-based method for quadratic programming problems with a single linear constraint and bounds on the variables. Inspired by the GPCG algorithm for boundconstrained convex quadratic programming [J.J. Moré and G. Toraldo, SIAM J. Optim. 1, 1991], our approach alternates between two phases until convergence: an identification phase, which performs gradient projection iterations ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comp. Opt. and Appl.
دوره 67 شماره
صفحات -
تاریخ انتشار 2017